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Abstract

A convection-dispersion equation governing pollution transport in a
saturated porous medium of in…nite extent is considered. To account for
the signi…cant heterogeneity of real media, the liquid convection velocity
is assumed to be a random function. The non-local (di¤erential-integral)
equation for the mean concentration …eld is derived and analyzed. Some
special cases are speci…ed and discussed along with the numerical illus-
tration of the e¤ect of non-locality and the correlation of the medium
properties on the mean concentration …eld.
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1 Introduction
In order to understand better the evolution of mass (solute, pollutant, etc.)

in complicated waterground formations the attention has been focused on the
e¤ects of spatial heterogeneity of the medium in question; more speci…cally - on
the spatial variability in the advection velocity which, in turn, is primarily due
to the variability in hydraulic conductivity.

It has been commonly accepted that a natural and promising way of quan-
tifying the e¤ects of this complicated heterogeneity consists in stochastic mod-
eling of basic hydraulic properties of porous media. In general, a real water
conducting medium is modelled by a stochastic medium, i.e., a medium whose
basic properties are described in terms of probability theory, or, more specif-
ically, in terms of random functions of position (cf. [1]). In the analysis of
a solute transport in porous media a random heterogeneity of the medium is
most often accounted for by assuming that the convection velocity u(r) in the
convection- di¤usion equation is a random …eld, i.e., in general, u = u(r; t; °);
where r = (x1; x2; x3); t is time and ° 2 ¡, where ¡ is the sample space (or the
space of elementary events with family of random events and with the proba-
bility de…ned on the elements of this family).

The governing equation for the random concentration …eld C(r; t; °) has the
form:

@C(r; t; °)

@t
¡r¢ [DrC(r; t; °)]+u(r; t; °) ¢ rC(r; t; °) = 0; (1.1)

where the pore velocity u(r; t; °) is assumed to be a given random …eld and
matrix D has only nonzero diagonal elements which usually are regarded to be
constant. In formulation of Eq.(1.1) the porosity of the medium µ has been
assumed to be constant. The probabilistic properties of u(r; t; °) follow from
the properties of random …eld of hydraulic conductivity K(r; t; °) and the local
relationship between u and K speci…ed by the Darcy law. The above model
for non-reactive solute transport have been investigated by a number of authors
(cf. [2]).

One of the important questions is associated with representation of the en-
semble mean concentration hC(r; t; °)i by ”e¤ective” equation. The existing
e¤orts have mainly been concentrated, however, with derivation from Eq. (1.1)
the ”e¤ective” convection-di¤usion equation of a classical type (Fickian approx-
imation), i.e.,

@ hC(r; t; °)i
@t

¡ r¢ [DeffrhC(r; t; °)i] +ueff ² rhC(r; t; °)i= 0; (1.2)

where Deff and ueff are non-random constant quantities. Although a number
of serious attempts have been made to derive equation (1.2) from (1.1) con-
sistently; there are, however serious di¢culties in providing the evidence that
such Fickian (or Gaussian) representation of hC(r; t; °)i can really be accepted
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(cf. [3]). It is also not easy to specify a possible class of variable (deterministic
or random) coe¢cients in (1.1) for which equation (1.2), usually interpreted as
describing large-scale concentration, could be derived.

However, there are no su¢cient reasons, why one should look for the equation
for hC(r; t; °)i just in the form of (1.2). In general, the equation for hC(r; t; °)i
should not be a priori restricted as its form is concerned. It can have, to some
extent, much more general form, e.g. di¤erential, integral, di¤erential-integral
etc.

In this paper we wish to show that under some quite general assumptions the
mean concentration …eld hC(r; t; °)i in stochastic porous medium is governed by
a non-local equation (di¤erential- integral one). Only in some special cases it can
be ”localized” to the di¤erential equation. These special cases will be speci…ed
and discussed along with the numerical illustration of the e¤ects of non- locality
and the correlation of the medium properties on the mean concentration …eld.

2 General formulation
Let us write down equation (1.1) in the following (symbolic) form:

L(°)C = g (2.1)

where L = L(°) is a linear di¤erential operator with random coe¢cients and g
is non-random element. We are looking for an equation for the mean hCi of an
unknown random …eld, i.e., an equation of the form:

L hCi = g (2.2)

where the operator L is deterministic and may be called an e¤ective operator
for a given operator L(°); certainly, in general L 6=hL(°)i (by hL(°)i we mean
the modi…ed operator L; where instead of random coe¢cients we substituted
their mean values).

Let us assume that the operator L(°) is invertible (for almost all ° 2 ¡)
then from (2.1) we have:

C = L¡1(°)g (2.3)

Averaging gives

hCi =< L¡1(°) >g (2.4)

or

< L¡1(°) >¡1<C > = g: (2.5)
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The above formal derivation shows that

L = < L¡1(°) >
¡1

(2.6)

Unfortunately, it is not easy to evaluate the inverse L¡1(°) of random op-
erator L(°). To make the equation for the mean …eld e¢cient some restrictions
concerning the random operator L(°) have to be introduced. Let us assume that
the coe¢cients in operator L(°) have a small ‡uctuating part (characterized by
a small parameter ²) so, L = L(°; ²).

The equation (2.1) can be written as:

©
L0 + ² hL1(°)i + ²2 hL2(°)i + :::

ª
C = g (2.7)

For ² = 0 the operator L(°) reduces to a deterministic (mean) operator L0.
The terms L1(°);L2(°); : : : represent stochastic perturbations of L0. It can be
shown (cf. [1], [4]) that the equation for the mean hCi has the form:

©
L0 + ² hL1(°)i + ²2

£
hL1 (°)iL¡1

0 hL1 (°)i ¡ (2.8)

¡ < L1 (°)L¡1
0 L1 (°) > + hL1 (°)i

¤ª
hCi = g + O(²3)

Equation (2.8) is the desired deterministic equation satis…ed by the mean
…eld (up to the second order terms).

Let us assume that L(°) is the sum of non-random operator L0 and a small
operator L1(°) with hL1(°)i = 0, i.e.,

L(°) = L0 + ²L1(°):

We obtain from Eq. (2.8) the following equation for hCi:

©
L0 ¡ ²2 < L1 (°)L¡1

0 L1 (°) >
ª

hCi = g (2.9)

The above equation corresponds to the Bourret approximation in analysis
of stochastic wave propagation problems (cf. [1]). In what follows, we shall
make use of equation (2.9) to the case of the solute transport equation (1.1).
Let us assume that in equation (1.1) matrix D = D0 is constant and that only
u(r; t; °) is random, and that

u(r;t; °) = u0 + ²u1(r;t; °): (2.10)

In this case

L0 =
@

@t
¡ D0r2 + u0 ² r; (2.11)

L1(°) = u1(r;t; °) ² r;
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L¡1f =

Z Z
G0 (r; r0; t; t0) f (r0) dr0dt0 (2.12)

where G0(r;r0; t; t0) is the Green function of the operator L0. Thus, equation
(2.9) takes the form (the dot denotes the scalar product of vectors in R3):

½
@

@t
¡ D0r2

r + u0 ¢ rr

¾
hC(r;t; °)i ¡ (2.13)

¡²2
Z Z

hu1(r;t;°) ¢ rrG0(r ¡ r0;t ¡ s)u1(r
0;s; °) ¢ rr0i

hC(r0;s; °)i dr0ds = 0

If the random …eld u(r; t; °) is spatially homogeneous and temporally sta-
tionary then

< u1(r;t; °)uT
1 (r0;s; °) > = K(r ¡ r0;t ¡ s) (2.14)

and equation (2.13) yields

½
@

@t
¡ D0r2

r + u0 ¢ rr

¾
hC(r;t; °)i ¡ (2.15)

¡²2
ZZ 3X

i;j=1

Kij(r ¡ r0;t ¡ s)
@

@xi
G0(r ¡ r0;t ¡ s)£

£ @

@xj
hC(r0;s; °)i dr0ds = 0:

The above di¤erential-integral equation constitutes a non-local, …rst or-
der approximation of the mean concentration …eld in randomly heterogeneous
medium. In such a description the mean concentration at point r and time t
is a¤ected by its values at other distant points r0 and preceding time instants
s. The scale of random heterogeneity is quanti…ed by the correlation radius (in
time and space) of random …eld u(r; t; °).

If the random velocity …eld depends on spatial variable only (what is the
most common case in the underground pollution transport problems), that is
u(r; t; °) ´ u(r; °), then the correlation function in equation (2.15) is K(r¡r0).

3 Analysis in the one-dimensional case
To make the analysis and results more transparent we restrict ourselves here
to one-dimensional transport problem. In this case equation (2.15) takes the
form:
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½
@

@t
¡ D0

@2

@x2
+ u0

@

@x

¾
hC(x; t; °)i = (3.1)

= ²2
tZ

0

1Z

¡1

K(x ¡ x0; t ¡ s)
@G(x ¡ x0; t ¡ s)

@x

@ hC(x0; s; °)i
@x0 dx0ds;

where G(z; ¿); z = x ¡ x0; ¿ = t ¡ s is the Green function associated with the
operator

L0 =
@

@t
¡ D0

@2

@x2
+ u0

@

@x
;

that is

G(z; ¿) =
1

2
p

D0¼¿
exp

½¡(z ¡ u0¿)2

4D0¿

¾
: (3.2)

The derivative of G(z; ¿) occurring in equation (3.1) is as follows

@G(z; ¿)

@x
=

1

4D0

p
D0¼¿

n
u0 ¡ z

¿

o
exp

½¡(z ¡ u0)2

4D0¿

¾
: (3.3)

Equation (3.1), which is di¤erential-integral with respect to the two vari-
ables, can be transformed to the following di¤erential-integral equation:

hC(x; t; °)i =

1Z

¡1

G(x ¡ x0; t)C0(x
0) dx0 + ²2

tZ

0

1Z

¡1

G(x ¡ x0; t ¡ s) dx0 ds £

(3.4)

£
sZ

0

1Z

¡1

K(x0 ¡ x"; s ¡ p)
@G(x0 ¡ x"; s ¡ p)

@x0
@ hC(x"; p)i

@x"
dx"dp:

Equation (3.4) can be useful for determining the concentration for relatively
small t. For large t we must apply some other technique to calculate hC(x; t; °)i.
One possibility is to apply the Fourier transform.

Let us remark that equation (3.1) in its integral part is of convolution
type. Therefore, making its Fourier transformation with respect to x, we obtain
relatively simple equation for Ĉ(k; t), where

Ĉ(k; t) :=

1Z

¡1

hC(x; t; °)i eikxdx =: F [C]; (3.5)
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where i is an imaginary unit number. Taking into account the relationships:

F [
@nC

@xn
] = (¡ik)nF [C]; (3.6)

F [f ¤ g] = F [f ] F [g];

equation (3.1) yields after transformation

dĈ(k; t)

dt
+ (Dk2 ¡ iku0) Ĉ(k; t) = ¡ i²2k

tZ

0

H(k; t ¡ s) Ĉ(k; t) ds (3.7)

with the initial condition:

Ĉ(k; 0) = Ĉ0(k) =

1Z

¡1

C0(x) eikxdx (3.8)

and H(k; t ¡ s) de…ned as:

H(k; t ¡ s) =

1Z

¡1

eikxK(x; t ¡ s)
@G(x; t ¡ s)

@x
dx (3.9)

Let us de…ne:

S(k; t) = e¡(Dok2¡iku0)t: (3.10)

Then the di¤erential-integral equation can be transformed to the following
integral one:

Ĉ(k; t) = S(k; t) Ĉ0(k) ¡ (3.11)

¡²2ik

tZ

0

S(k; t ¡ s)

sZ

0

H(k; s ¡ p) Ĉ(k; p) dp ds

To obtain the density of concentration for a …xed instant of time t, we must
calculate Ĉ(k; t) from equation (3.11) and then determine its inverse Fourier
transform according to the known formula:

hC(x; t; °)i =
1

2¼

1Z

¡1

Ĉ(k; t)e¡ikxdk: (3.12)
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3.1 White-noise temporal variability of the pore velocity

In the idealized case, when temporal random variations are assumed to be char-
acterized by a white-noise, we can derive from the general non-local equation
(3.1) a common form of di¤erential dispersion equation with some e¤ective dis-
persion. To show this let us assume that:

K(z; ¿) = ½(z) ±(¿) (3.13)

where ±(¿) is a Dirac delta function. Then the integral part of the equation
(3.1) is:

tZ

0

1Z

¡1

K(x ¡ x0; t ¡ s)
@G(x ¡ x0; t ¡ s)

@x

@ hC(x0; s; °)i
@x0 dx0 ds = (3.14)

=

tZ

0

±(t ¡ s)

1Z

¡1

½(x ¡ x0)
@G(x ¡ x0; t ¡ s)

@x

@ hC(x0; s; °)i
@x0 dx0 ds =

=
1

2

1Z

¡1

½(x ¡ x0) lim
¿!1

@G(x ¡ x0; ¿ ; )

@x

@ hC(x0; t; °)i
@x0 dx0 =

= ¡1

2

1Z

¡1

½(x ¡ x0)±0
x(x ¡ x0)

@ hC(x0; t; °)i
@x0 dx0 =

=
1

2
½(0)

@2 hC(x; t;°)i
@x2

+
1

2
½0(0)

@ hC(x; t; °)i
@x

=

=
1

2
½(0)

@2 hC(x; t; °)i
@x2

;

where we used the relation:

lim
¿!0

@G(x ¡ x0; ¿)

@x
= ±0

x(x ¡ x0); (3.15)

which holds since G(z; ¿) is the Green function and for ¿ tending to zero it
approaches ±(x ¡ x0): ±0

x is the derivative of Dirac delta function with respect
to its variable x (see [5]) and

½0(0) = 0; (3.16)

due to the symmetry,

½(x) = ½(¡x):
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Therefore, equation (3.1) takes the form:

½
@

@t
¡

µ
D0 +

1

2
½(0)

¶
@2

@x2
+ u0

@

@x

¾
hC(x; t; °)i = 0: (3.17)

This result coincides with that obtained in paper [6] for the turbulent dif-
fusion in incompressible ‡uid. The above equation represents a speci…c form of
the ”e¤ective” convection-di¤usion, Fickian approximation (1.2)

3.2 Spatial variability of a medium.

Let us assume now that the velocity …eld u is independent of time t, i.e.,
u(x; t; °) ´ u(x; °) and

u = u0 + u1(x; °); (3.18)

hu1(x; °)i = 0; (3.19)

< u1(x; °) u1(x
0; °) > = K(x ¡ x0):

Then the equation (3.1) takes the following simpli…ed form:

½
@

@t
¡ D0

@2

@x2
+ u0

@

@x

¾
hC(x; t; °)i = (3.20)

= ²2
Z t

0

Z 1

¡1
K(x ¡ x0)

@G(x ¡ x0; t ¡ s)

@x

@ hC(x0; s; °)i
@x0 dx0 ds:

An interesting question which arises is concerned with a possible localization
of the non-local equation (3.20). A spatial localization in such a case means that
an approximate equation arising from the original di¤erential-integral one takes
the form in which hC(x; t; °)i as a function of x is subjected to di¤erentiation
only. The conditions which make such a simpli…cation of the problem (3.20)
valid are quite involved. It is required that the spatial radius of correlation is
relatively small comparing to other linear dimensions of the system in question.
In other words, the numerical values of the parameters in equation (3.20) must
be such, that we can replace the integral kernel by a function being the Dirac
delta in space. Taking into account the properties of the Green function G(z; ¿)
and correlation function K(z) and assuming symmetry in x of the concentration
function hC(x; t; °)i, we deduce that the integral term in equation (3.20) should
be approximated of the following way (f(x) is some test function):
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1Z

¡1

K(x ¡ x0)
@G(x ¡ x0; t ¡ s)

@x
f(x0) dx0 »= (3.21)

1Z

¡1

Feff (t ¡ s)±(x ¡ x0)
@

@x0 f(x0) dx0;

where, analogously to the results of paper [7]:

Feff (t ¡ s) =

1Z

¡1

K(x) G(x; t ¡ s)dx: (3.22)

In such a case the approximate localized equation takes the following form:

@ hC(x; t; °)i
@t

¡ D0
@2 hC(x; t;°)i

@x2
+ u0

@ hC(x; t; °)i
@x

= (3.23)

= ²2
tZ

0

Feff (t ¡ s)
@2 hC(x; s; °)i

@x2
ds:

4 Numerical illustration
Consider the particular problem of the propagation of the unit pollution mass
which at the initial instant of time t = 0 occupies some interval (¡a; a), that is

C(x; 0) = 1 for x 2 (¡a; a);
C(x; 0) = 0 otherwise,

(4.1)

and the correlation function K has the following exponential Gaussian form:

K(x ¡ x0) = ¾2e¡®(x¡x0)2 : (4.2)

In this case equation for the mean concentration (3.4) takes the following
form:

hC(x; t; °)i = ©

µ
a ¡ x + u0tp

2D0t

¶
¡ ©

µ¡a ¡ x + u0tp
2D0t

¶
+ (4.3)

+²2
tZ

0

1Z

¡1

G(x ¡ x0; t ¡ s) dx0 ds £

£
sZ

0

1Z

¡1

K(x0 ¡ x")
@G(x0 ¡ x"; s ¡ r)

@x0
@ hC(x"; r; °)i

@x"
dx"dr;
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where © is the Gaussian probability distribution function.
Also equation (3.11) for the Fourier transform of the density of concentration

can be simpli…ed. We can calculate Fourier transform (3.9) of the integral kernel
and the Fourier transform (3.8) of the initial condition of the transport equation.
The calculated transformations in this particular case are:

H(k; t ¡ s) =

1Z

¡1

eikxK(x) G(x; t ¡ s) dx = (4.4)

=
¾2(2®u0t ¡ ik)

(1 + 4D0®t)3=2
exp

½
(ik ¡ D0k

2)t ¡ ®u2
0t

2

1 + 4D0®t

¾

and

Ĉ0(k) =

Z 1

¡1
C0(x)eikxdx =

2 sin ka

k
; (4.5)

and the di¤erential-integral equation (3.11) for the spatial Fourier transform of
the averaged concentration density has the following form:

Ĉ(k; t) =
2 sin ka

k
e¡(D0k2¡iku0)t ¡ (4.6)

¡²2
tZ

0

e¡(D0k2¡iku0)(t¡p)

pZ

0

W (k; p ¡ s) Ĉ(s; k) ds dp;

where

W (k; t) =
¾2(2i®u0tk + k2)

(1 + 4D0®t)3=2
exp

½
(ik ¡ D0k

2)t ¡ ®u2
0t

2

1 + 4D0®t

¾
: (4.7)

The above obtained equations (4.3) and (4.6) can be used for numerical
discussion of the evolution of the concentration density in a random medium.
However, before we do this, let us study the non-random di¤usion-convection
equation, that is such where both the di¤usion coe¢cient D0 and velocity u0 are
constant. It is known that these two parameters quantify two qualitatively dif-
ferent aspects of the transport process. Namely, D0 describes the di¤usion due
to atomic movement of the particles, guaranteeing mixing phases and tending
the process to equilibrium whereas u0 is responsible for the systematic move-
ment of the phases without mixing e¤ects and graphically it is visualized as the
systematic movement of the maximal value of concentration (see Fig.1). In re-
alistic systems (in our case - in real ground water formations) dispersion due to
heterogeneity of the medium provides a signi…cant contribution to the process
(similarly as turbulent di¤usion (see [8])).
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In this paper we take into account the e¤ect of the randomness of the velocity
…eld u. It is seen that the random ‡uctuations of the velocity …eld, in average,
increase the e¤ect analogous to molecular di¤usion and leave the convection
di¤usivity without change (see Fig. 2, 3). The intensity of the changes strongly
depends on the length of the spatial radius of correlation (for the considered
correlation function proportional to 1=®) and it increases along with growth of
the radius (see Fig. 2, 3). Let us remark that for long time even in the system
with a small radius of correlation, the randomness of the velocity …eld has the
signi…cant e¤ect on the di¤usivity.

As we observed, for …xed time t the di¤usion due to randomness of the ve-
locity …eld u has the character of the molecular di¤usion with some modi…ed
di¤usion coe¢cient D. However, the numerical calculations show that this con-
stant changes in time (see Fig. 4, 5). This fact coincides with the e¤ect of the
localization performed in Section 3 of this paper, where equation (3.23) shows
that e¤ective medium di¤usion depends on time.

In the considered example, for the correlation function of the form (4.2), the
required coe¢cient (3.22) is:

Feff (t ¡ s) =

1Z

¡1

K(z)G(z; t ¡ s) dz = (4.8)

=
¾2

p
1 + 4D0®(t ¡ s)

exp

½ ¡®u2
0(t ¡ s)2

1 + 4D0®(t ¡ s)

¾

and the localized equation (3.23) for the concentration takes the following
form:

@ hC(x; t; °)i
@t

¡ D0
@2 hC(x; t;°)i

@x2
+ u0

@ hC(x; t; °)i
@x

= (4.9)

= ²2
tZ

0

¾2

p
1 + 4D0®(t ¡ s)

exp

½ ¡®u2
0(t ¡ s)2

1 + 4D0®(t ¡ s)

¾
@2 hC(x; s; °)i

@x2
ds:

Figures 6, 7 show the concentration density for the considered example,
calculated with the use of the approximate equation (4.9). It is seen, that
even for relatively long radius of correlation 1=® this local approximation is
quite satisfactory and di¤ers from the solution of the non-local equation very
slightly..
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5 Figures

Fig. 1. Evolution in time of the concentration density
for non-random model (D0 = 1:0; u0 = 1:0)

Fig. 2. Distribution of the concentration density at t = 0:3 for
the non-local and non-random model (D0 = 1:0; u0 = 1:0)
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Fig. 3. Distribution of the concentration density at t = 1:0 for
the non-local and non-random model (D0 = 1:0; u0 = 1:0)

Fig. 4. Distribution of the concentration density at t = 0:3 for the non-local
and non-random model with changing D0 (u0 = 1:0)
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Fig. 5. Distribution of the concentration density at t = 1:0 for the non-local
and non-random model with changing D0 (u0 = 1:0)

Fig. 6. Comparison of the concentration density obtained
with the use of the exact and the approximate method

for t = 0:3 (D0 = 1:0; u0 = 1:0)
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Fig. 7. Comparison of the concentration density obtained
with the use of the exact and the approximate method

for t = 1:0 (D0 = 1:0; u0 = 1:0)
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